Microsolvation of methylmercury: structures, energies, bonding and NMR constants (\(^{199}\)Hg, \(^{13}\)C and \(^{17}\)O)†

Edison Florez,\(^a\) Alejandro F. Maldonado,\(^b\) Gustavo A. Aucar,\(^*\)b Jorge David\(^c\) and Albeiro Restrepo\(^*\)\(^a\)

Hartree–Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH\(_3\)Hg\(^+\)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent Hg–O interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH\(_3\)Hg\(^+\)OH\(_2\)) unit. Nuclear magnetic shielding constants \(s\)\(^{199}\)Hg), \(s\)\(^{13}\)C) and \(s\)\(^{17}\)O), as well as indirect spin–spin coupling constants \(J\)\(^{199}\)Hg–\(^{13}\)C), \(J\)\(^{199}\)Hg–\(^{17}\)O) and \(J\)\(^{13}\)C–\(^{17}\)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on \(s\)\(^{13}\)C) and 14% on \(s\)\(^{17}\)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on \(s\)\(^{199}\)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). \(J\)-coupling constants are highly influenced by relativity when mercury is involved as in \(J\)\(^{199}\)Hg–\(^{13}\)C) and \(J\)\(^{199}\)Hg–\(^{17}\)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C–Hg–O), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

Introduction

Mercury exists in a wide variety of chemical forms, all of which are toxic. Even though the levels of toxicity vary, every form can affect the nervous, immune and reproductive systems.\(^1\)\(^2\) Once in contact with water, mercury transforms into methylmercury through the process of methylation, which mainly occurs in ocean and river sediments that are rich in organic materials.\(^2\)\(^5\) It is difficult to overemphasize the importance of water in biological systems since water comprises 70–80% of the mass of all living organisms, and since it is well known that water not only serves as a medium in which all known biochemical processes occur, but also, in many cases, water is directly involved in such processes.\(^6\) In their cationic forms, metals play important roles in biochemical processes because they are electron deficient species. Most biomolecules, such as proteins and DNA, contain readily available electrons, thus, biomolecule ↔ metallic cation interactions inside living organisms are highly favored. In the specific case of methylmercury, this chemical affinity is a source of great concern, to the point that several multinational treaties, such as the Minamata agreement,\(^7\)\(^8\) aim at complete elimination of all mercury containing pollutants, and to this end, mercury compounds have been banned from industrial and domestic applications.

Analyzing and describing CH\(_3\)Hg\(^+\) behavior in aqueous environments, in other words, studying the microsolvation process of the methylmercury cation is necessary because of the need to understand the biochemical processes and macroscopic phenomena in which it is involved. Understanding the behavior of various forms of mercury, in particular methylmercury, is a first and important step for their appropriate handling and control.
We offer in this work a detailed view of the structural, energetical, and bonding aspects involved in the microsolvation of methylmercury in aqueous environments; we supplement this information with very sophisticated calculations of the NMR constants, however, the physiological and biological aspects of the interaction between mercury compounds and living organisms is a subject too broad and complex that falls outside the scope of this work.

Microsolvation with a finite number of water molecules may be considered as an intermediate between the gas phase and the condensed phase. Once enough solvent molecules are taken into account in microsolvation, the properties of the condensed state can be explained.9

A convenient way of classifying molecular properties is to separate them into intrinsic and response properties. Intrinsic properties include excitation energies, thermodynamic properties, vibrational levels, molecular structures, etc. Response properties measure the effect of applied electromagnetic fields on a molecular system; these include polarizability, nuclear magnetic resonance parameters (nuclear magnetic shielding, \(\sigma \), and indirect spin–spin coupling, \(J \)), magnetic moments, etc. Regarding response properties, NMR spectroscopy is a common technique used to obtain detailed information about molecular structures due to the sensitivity of NMR parameters to chemical environments and to the high structure ↔ spectroscopy correlation. Magnetic properties of mercury compounds have been extensively studied by both experimental and theoretical methods. Nuclear magnetic shielding and indirect \(J \)-coupling constants have been determined in different mercury species for various purposes: structural determination,10–12 analysis of inter- and intramolecular interactions13–15 and the description of several electronic effects.16,17 NMR parameters have also been used to study the interactions between methylmercury and a number of biomolecules in order to understand the biological role of these substances.18–21

To determine the reliability of the results in computational studies of chemical systems, specifically in the study of microsolvation of methylmercury, three important approximations or aspects must be taken into account: the level of theory, solvent effects, and relativistic effects.22 For example, solvent effects on nuclear shielding and \(J \) coupling constants in methylmercury halides, \(\text{CH}_3\text{HgX} \) (X = Cl, Br, I), have been reported;13,14 a detailed comparison of the experimental and calculated results reveal high sensitivity to environmental effects, good agreement is achieved as long as solvent effects are considered in the computations. Solvent effects were also studied on \(\text{Hg(CN)}_2 \) and \(\text{MeHgCl} \) by Zheng and Autschbach at the ZORA level under \textit{ab initio} molecular dynamics using the droplet model;23 they found deviations no larger than 6% between the calculated and experimental values. However, 4-component and ZORA calculations reproduced the experimental tendency underestimating the experimental measurements.

To the best of our knowledge, there is no information in the scientific literature concerning the structures of microsolvated methylmercury, nothing is known either about the nature of the methylmercury ↔ water molecular interactions responsible for cluster stability, nor about the \(\sigma \) and \(J \) NMR constants for methylmercury in aqueous media. In view of the preceding discussion, we think that this is a sensible lack of information, which this paper attempts to remedy.

Theoretical methods and computational details

Relativistic polarization propagator

Any static second order molecular property can be studied with the relativistic (REL) formalism of polarization propagators;29–31 non-relativistic (NR) methods can be safely employed when only light atoms are involved. One of the advantages of this approach is the fact that NR values can be obtained directly from relativistic calculations making \(c \), the speed of light, to scale to infinity. The fully relativistic expressions of NMR spectroscopic parameters are written as

\[
J_{MN} = \frac{\varepsilon^2 \hbar^2}{\gamma M \gamma N} \left\langle \frac{\mathbf{r}_M \times \mathbf{r}_N}{r^3_M} \right\rangle
\]

and

\[
\sigma_M = \varepsilon^2 \left\langle \frac{\mathbf{r}_M}{r^3_M}, \mathbf{z} \times \mathbf{r}_G \right\rangle
\]

where \(J_{MN} \) is the indirect \(J \) coupling tensor between nuclei \(M \) and \(N \), and \(\sigma_M \) refers to the nuclear magnetic shielding tensor of nucleus \(M \). The above expressions are fully relativistic given the fact that retardation effects are not to be included due to their comparative (with respect to the leading relativistic effects) small contributions.32,33 From these equations one observes that only one electronic mechanism is involved in each of both NMR spectroscopic parameters. There is also no distinction between the diamagnetic and paramagnetic terms.31

All terms in eqn (1) and (2) can be calculated at different levels of approach depending on the fluctuation potential, \(\varepsilon \), pure zeroth order (PZOA), consistent first order or random phase approximation (RPA), second order level (SOPPA), etc. The fluctuation potential represents the difference between the Coulomb and self-consistent field (SCF) potentials. As has been
explained in some detail elsewhere,30,31 polarization propagators do not arise from a wavefunction-based formalism, rather, they arise from path integral treatment, thus the perturbative expansions give different terms when compared to the usual ones. Within polarization propagators, the introduction of electron correlation up to the first order is obtained at the RPA level of approach. The actual expressions are in this case the same as those obtained by the coupled Hartree–Fock scheme.30 At the moment, only the relativistic RPA level, RelPPA–RPA, has been implemented in the DIRAC code.34

Kinetic balance prescriptions

From the time independent one-electron Dirac equation in a static external potential V provided by the nuclei in the Born–Oppenheimer frame, the relationship between the large and small components of the four-component spinor can be obtained as

$$\psi^S = \frac{1}{2mc} \left[1 + \frac{E - V}{2mc^2} \right]^{-1} (\sigma \cdot p) \psi^L.$$ \hspace{1cm} (3)

In the $c \to \infty$ limit, the square bracket approaches unity, resulting in

$$e \psi^S = \frac{(\sigma \cdot p)}{2m} \psi^L.$$ \hspace{1cm} (4)

This condition is called the kinetic balance prescription and ensures that the kinetic energy is properly represented in the non-relativistic limit. Gaussian basis sets are used to ease calculations due to the straightforward evaluation of multi-center integrals

$$G_{\ell m n} = N \frac{1}{R_\ell} \chi_{\ell m n} \chi_{\ell m n}^\dagger (\theta, \phi)$$ \hspace{1cm} (5)

where N is a normalization constant, A refers to the nuclear center and $\chi_{\ell m n}$ is the angular part of the hydrogenic solution of the Dirac equation. From eqn (4), for each large component function with angular quantum number ℓ, we get two small component functions with $\ell + 1$ and $\ell - 1$ angular momentum numbers

$$\psi^L \propto \psi^L \Rightarrow \psi^S \propto \psi^S = \begin{cases} \{ G_{\ell - 1} + G_{\ell + 1} \}; & (RKB) \\ \{ G_{\ell - 1}^+ + G_{\ell + 1}^+ \}; & (UKB) \end{cases} \hspace{1cm} (6)$$

and from this, two different prescriptions follow. In the restricted kinetic balance (RKB) approach, the small component basis set comes from direct application of eqn (4). This gives a 1:1 ratio between the large and small components. In the unrestricted kinetic balance (UKB) prescription, each Gaussian function generated is independently used as a basis function and produces an approximate 2:1 ratio between the large and small components. This increases the size of the small components and extends the positronic space. The size of the small components is a very important issue in the calculation of magnetic properties because the diamagnetic portion of these properties, including nuclear magnetic shieldings, is related to negative energy states.35

Generating cluster candidate structures

A key step in the study of atomic or molecular clusters is an appropriate description of the potential energy surface (PES). Finding equilibrium or minimum energy structures is a tremendously challenging problem because the number of minima in a given PES increases exponentially with the number of geometrical variables. In this work, we use the ASCEC36 (Anneling Simulado con Energía Cuántica) method in order to explore the potential energy surfaces (PESs) of mercury interacting with up to 3 water molecules, $\left[\text{CH}_3\text{Hg(H}_2\text{O)}_n \right]$, $n = 1, 2$, and 3. ASCEC uses a simulated annealing procedure37–39 to generate cluster candidate structures which undergo further optimization by gradient-following techniques to locate local minima. ASCEC has been successfully used to treat a wide variety of chemical problems.6,40–58 A detailed description about the working principles of ASCEC, including a discussion on the use of a modified Metropolis acceptance test and the generation of Markov chains in the space of intermolecular interactions, can be found elsewhere.40,41

In this work, random exploration of the $\left[\text{CH}_3\text{Hg(H}_2\text{O)}_n \right]$, $n = 1, 2$, and 3, PESs were carried out using the B3LYP hybrid functional in conjunction with the Stuttgart potential SDDALL to generate candidate structures. As an initial approach to understanding the relativistic and correlation effects, two types of optimizations with traditional gradient-following methods of the candidate structures afforded by ASCEC were carried out. We performed scalar relativistic (SR) optimizations by using GAUSSIAN 09 software,35 the candidate structures were also subject to relativistic (REL) optimizations using DIRAC 13.34

Scalar relativistic calculations

To select the level of theory that produces reliable results at a realistic computational cost, one of the candidate structures afforded by ASCEC for the $[\text{CH}_3\text{Hg(H}_2\text{O)}_n]$, system was optimized using the uncorrelated HF Hamiltonian and correlated methods, namely the B3LYP functional, second order perturbation theory (MP2), configuration interaction with single and double excitations (CISD) and its quadratic approach (QCISD), and coupled clusters with single and double excitations (CCSD). We used Stuttgart (SDDALL) and Los Alamos (LanL2DZ) potentials for mercury and the 6-311++G(d,p) basis set for all other atoms. The above mentioned calculations led us to select MP2. Thus, at the scalar relativistic level, MP2 in conjunction with SDDALL and LanL2DZ for Hg and the 6-311++G(d,p) basis sets for all other atoms was used to locate and characterize all stable minima within each PES. HF optimizations were also carried out to gain insight into the effect of electron correlation. The set of these two potentials and the 6-311++G(d,p) basis set will be referred to as ECP in what follows without loss of generality. Characterization of each equilibrium structure as a true minimum was achieved through the calculation of analytical vibrational frequencies and analysis of the eigenvalues of the Hessian matrix in nuclear coordinate space. Additional energies with larger basis sets were calculated on the structural motifs (true HF, MP2, minima): the aug-cc-pVTZ
basis for H, C and O and the Def2-TZVPPD basis for Hg. It is expected that these types of bases provide appropriate treatment for Hg–O and hydrogen bonding interactions, both of which play stabilizing roles in the title systems. In a similar way to ECP, from now, the whole Def2-TZVPPD and aug-cc-pVTZ bases will be simply referred to as Def2. Binding energies (BE) were calculated by subtracting the energy of each molecular motif from the sum of the energies of isolated constituents, that is, \(n \) times the energy of the water molecule plus the energy of isolated methylmercury. In this way, large positive BE values correspond to large binding energies. Relative energies (\(\Delta E \)) were obtained by calculating the energy difference between a particular molecular motif and the energy of the global minimum in the corresponding PES. All relative and binding energies reported here were corrected by zero-point vibrational energies (ZPEs) at the MP2/ECP level.

The most common hypothesis about chemical bonds and molecular interactions is that these only depend on the valence electrons with little or no intervention of inner electrons. In this sense, ECPs are built and used. In ECPs, valence electrons are described by a linear combination of atomic orbitals while inner electrons with little or no intervention of inner electrons. In this way, large positive BE values correspond to large binding energies. Relative energies (\(\Delta E \)) were obtained by calculating the energy difference between a particular molecular motif and the energy of the global minimum in the corresponding PES. All relative and binding energies reported here were corrected by zero-point vibrational energies (ZPEs) at the MP2/ECP level.

The most common hypothesis about chemical bonds and molecular interactions is that these only depend on the valence electrons with little or no intervention of inner electrons. In this sense, ECPs are built and used. In ECPs, valence electrons are described by a linear combination of atomic orbitals while inner electrons (e.g. 60 for Hg) are described by using a core potential. Since relativistic effects mainly arise from inner electrons in heavy atoms, these are included in the potential.

Relativistic calculations

Relativistic optimizations were carried out by using the Dirac–Hartree–Fock Hamiltonian (DHF) in conjunction with the aug-cc-pV2Z basis for carbon, hydrogen and oxygen atoms, and the dyall.v2z basis for mercury. Basis sets were completely uncontracted and the nuclei were modeled as Gaussian distributions. Symmetry constraints were not used in the calculations for any of the motifs.

Relativistic MP2 (Rel-MP2) was developed for a selection of Kramer-restricted DHF closed and open shell reference wavefunctions and was successfully applied to the ground state of the \(\text{O}_2 \) molecule. This procedure was extended and applied to the ground state of CuF, AgF and AuF. Relativistic bond contractions for AuF at the SCF and MP2 levels suggested that DHF should be revised to go beyond the independent particle model and include correlation. In 2005, the first implementation of analytical first-order one-electron molecular properties at the Dirac–Coulomb MP2 level of theory was described. The method was applied to the calculation of parity violation energies in \(\text{H}_2\text{X}_2 \) (X = O, S, Se, and Te); it was shown that electron correlation does not play an important role in determining this property for those particular systems.

Results and discussion

Cluster structures

At the SR level, we located 1, 2, and 6 structures on the PES for \(n = 1, 2, \) and 3 respectively. Due to the extremely high computational cost of full DHF calculations, we selected the most stable structures for \(n = 1 \) and 2, and the 4 lowest energy isomers for the \(n = 3 \) case obtained from the SR case and further optimized them at the full DHF level. Small to negligible changes when comparing SR vs. full DHF molecular geometries justify not pursuing full relativistic optimizations on all clusters for all molecularities.

We adopt a simplistic, energy driven notation to classify the located clusters: we address the structures as \(\text{W}_n\text{S}_m \) with \(n \) indicating the number of water molecules and \(m \) establishing the relative stability; as an illustration of this notation, \(\text{W}_4\text{S}_1 \) refers to the fourth most stable structure for the interaction between methylmercury and three water molecules. A very similar notation is used to describe the structures found with the REL methodology: the geometries found with DHF are denoted \(r\text{-W}_n\text{S}_m \). Fig. 1 shows the geometrical motifs obtained at the SR MP2/ECP level, together with the notation and relative energies.

Table 1 exposes the most relevant geometrical parameters obtained at the MP2/ECP level while Table 2 summarizes the effects of relativity and electronic correlation in the structures; there are no relevant geometrical changes in the spatial arrangements of water molecules with regard to SR results.

At the MP2/ECP level, C–H bond lengths remain unchanged (1.09 Å) for all the motifs while Hg–C distances slightly change between 2.05 Å and 2.14 Å. We point out that regardless of the stoichiometry of the clusters, shorter Hg–C bond lengths are clearly seen in the low energy structures. The C–Hg–H angle remains almost constant around 23°, while the H–C–H angle marginally changes between 111° and 112°, characteristic of sp\(^3\) hybridized carbons.

An excellent agreement between experimental non-solvated and calculated solvated geometries is obtained for \(\text{CH}_3\text{Hg}^+ \). Comparing our geometries with the ones experimentally determined via NMR\(^{10-12}\) and electron diffraction,\(^ {64}\) differences no larger than 4% are observed. This means that the \(\text{CH}_3\text{Hg}^+ \) geometry is not very sensitive to interactions with the solvent. It is seen that full relativistic DHF geometrical variables are quite similar to the ones obtained with SR MP2/ECP and that both reproduce the experimental results for non-solvated \(\text{CH}_3\text{Hg}^+ \) with slight differences. At the REL level, C–H bond lengths remain unchanged (1.08 Å), while C–Hg bonds remain close to 2.10 Å; C–Hg–H angles change between 22° and 23° and the H–C–H angles remain at ≈112°.

O–H bonds not taking part in hydrogen bonding do not change their lengths to any appreciable degree, remaining close to 1.0 Å. On the other hand, hydrogen bond distances (H\(\text{O}_2\)···O–H) cover the 1.48–2.32 Å range. The 0.84 Å window for hydrogen bond distances in the \([\text{CH}_3\text{Hg}(\text{H}_2\text{O})_{2,3}]^+\) complexes allows a wide spectrum of geometric possibilities and interaction energies.

Two types of Hg–···O contacts are discerned from Fig. 1: on one hand, there are those for which the C–Hg–···O angle is close to 180°, these are seen in all structures, on the other hand, there are those for which the C–Hg–···O angle is substantially smaller than 180°, usually close to 120°, these appear in all cases where a second water molecule is in direct contact with Hg (see structures \(\text{W}_3\text{S}_5, \text{W}_3\text{S}_6 \) and \(\text{W}_3\text{S}_7 \) in Fig. 1). These two types of Hg–···O interactions are not only geometrically distinguishable, they also have very different origins and nature as will be discussed later.
Tables 1 and 2 suggest that in view of the demanding computational cost of full relativistic geometry optimizations, SR geometries are acceptable, with minor to negligible changes between the two sets of geometries. Interaction energies (Table 3) on the other hand seem to be more sensitive to relativistic effects and to the appropriate description of electron correlation. SR HF underestimates BEs by up to 14 kcal mol\(^{-1}\) when compared to SR MP2 calculations, however, in the relativistic case, DHF BEs exceed Rel-MP2 BEs by up to 17 kcal mol\(^{-1}\). Furthermore, our results suggest that relativistic effects and electron correlation both need to be included for accurate calculations of interaction energies which are overestimated by up to 17 kcal mol\(^{-1}\) in DHF//HF when compared to Rel-MP2//MP2 (Table 3). Table 3 lists BEs at the SR and full relativistic (DHF) levels. When electron correlation at the MP2 level is included in the SR calculations, BEs increase by \(E_2\%\) for all molecules, this is in very good agreement with what has been found in other molecular systems.\(^{65,66}\) On the other hand full relativistic BEs are slightly larger (\(\approx 1\) kcal mol\(^{-1}\)) than those calculated at the SR level, this is also in agreement with previous results reported for molecules containing heavy atoms.\(^{67}\) However, opposite results are obtained

Table 1
Scalar relativistic MP2/ECP structural parameters for \([\text{CH}_3\text{Hg(H}_2\text{O)}_n\text{]}^+\) clusters. All bond lengths are in Angstroms and all bond angles in degrees.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(W_1\text{S}_1)</th>
<th>(W_2\text{S}_1)</th>
<th>(W_2\text{S}_2)</th>
<th>(W_3\text{S}_1)</th>
<th>(W_3\text{S}_2)</th>
<th>(W_3\text{S}_3)</th>
<th>(W_3\text{S}_4)</th>
<th>(W_3\text{S}_5)</th>
<th>(W_3\text{S}_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–Hg</td>
<td>2.06</td>
<td>2.06</td>
<td>2.12</td>
<td>2.05</td>
<td>2.05</td>
<td>2.06</td>
<td>2.07</td>
<td>2.11</td>
<td>2.14</td>
</tr>
<tr>
<td>C–H</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td>C–Hg–H</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>H–C–H</td>
<td>112</td>
<td>111</td>
<td>112</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>112</td>
</tr>
</tbody>
</table>

Table 2
Structural parameters determined within the relativistic frame for \([\text{CH}_3\text{Hg(H}_2\text{O)}_n\text{]}^+\). Bond lengths are in Å and bond angles in degrees. For experimental results of Kashiwabara and coworkers\(^{64}\) refer to electron diffraction studies on the dimethylmercury gas phase, while the work by Jokisaari and Diehl\(^{12}\) involves NMR spectroscopy of \(\text{CH}_3\text{HgCl}\) dissolved in liquid crystals.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DHF</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–Hg</td>
<td>2.10</td>
<td>2.08</td>
</tr>
<tr>
<td>C–H</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>C–Hg–H</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>H–C–H</td>
<td>112</td>
<td>111</td>
</tr>
</tbody>
</table>

Fig. 1
Local minima in the PESs for the \([\text{CH}_3\text{Hg(H}_2\text{O)}_n\text{]}^+\) systems at the MP2/ECP SR level. ZPE corrected relative energies with respect to the global minimum within each PES are also included. Oxygen atoms are given in red, hydrogen atoms in white, carbon atoms in yellow and mercury atoms in blue. Bonding paths and intermolecular bond critical points (green dots) for all intermolecular interactions are also shown.
As discussed above, thermodynamic stability of $[\text{CH}_3\text{Hg(H}_2\text{O})_{1,2,3}]^+$ systems. m is the number of Hg--O contacts. h is the number of hydrogen bonds. BE: binding energy. All MP2/Def2 energies are corrected for the MP2/ECP unscaled ZPEs. Relativistic single point energies were calculated at the Rel-MP2 level on the MP2/ECP optimized geometries and DHF energies were calculated on the HF/ECP geometries. The aug-cc-pVDZ (H, C, O) and doubly.v2z (Hg) basis sets were used.

<table>
<thead>
<tr>
<th>Structure</th>
<th>m</th>
<th>h</th>
<th>BE (kcal mol$^{-1}$)</th>
<th>BE + ZPE (kcal mol$^{-1}$)</th>
<th>BE (kcal mol$^{-1}$)</th>
<th>BE + ZPE (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1S_1</td>
<td>1</td>
<td>0</td>
<td>29.29</td>
<td>27.14</td>
<td>34.96</td>
<td>32.92</td>
</tr>
<tr>
<td>W_2S_1</td>
<td>1</td>
<td>1</td>
<td>45.15</td>
<td>40.51</td>
<td>55.28</td>
<td>30.61</td>
</tr>
<tr>
<td>W_3S_2</td>
<td>2</td>
<td>0</td>
<td>42.39</td>
<td>37.92</td>
<td>49.55</td>
<td>44.99</td>
</tr>
<tr>
<td>W_1S_2</td>
<td>1</td>
<td>2</td>
<td>58.81</td>
<td>52.01</td>
<td>72.61</td>
<td>65.61</td>
</tr>
<tr>
<td>W_2S_2</td>
<td>1</td>
<td>2</td>
<td>55.56</td>
<td>48.80</td>
<td>69.61</td>
<td>62.62</td>
</tr>
<tr>
<td>W_3S_3</td>
<td>2</td>
<td>2</td>
<td>55.64</td>
<td>48.76</td>
<td>68.49</td>
<td>61.44</td>
</tr>
<tr>
<td>W_2S_3</td>
<td>1</td>
<td>2</td>
<td>56.74</td>
<td>49.98</td>
<td>67.72</td>
<td>60.39</td>
</tr>
<tr>
<td>W_3S_4</td>
<td>1</td>
<td>2</td>
<td>51.64</td>
<td>45.17</td>
<td>61.53</td>
<td>54.53</td>
</tr>
</tbody>
</table>

The Laplacian of the electron density

$$\nabla^2 \rho(r_c) = \frac{\hbar^2}{4m} \nabla^2 \rho(r_c) = 2g(r_c) + \psi'(r_c)$$

where $g(r_c)$ is always positive and $\psi'(r_c)$ is always negative. $\nabla^2 \rho(r_c)$ at a BCP is determined by the 2:1 virial ratio between both forms of energy. BCPs are local extrema of the electron density, thus, the sign of the Laplacian affords valuable information about the nature of the interaction: positive Laplacians correspond to local minima, which means that there is charge depletion at the BCP and charge concentration towards the nuclei, this is typical for long range and ionic interactions; on the other hand, negative Laplacians correspond to local maxima in the electron density, meaning that there is charge concentration in the intermediate region between the involved nuclei, around the BCPs, which is characteristic of shared or covalent interactions. Even though the virial theorem can be derived from an effective relativistic Hamiltonian, we consider here that the electron density at a bond critical point is closely related to the behavior of valence electrons. It is

When the MP2 electron correlation is considered in the full relativistic calculations, leading to severe overestimation of binding energies in the SR regime.

Tables 1 and 2 show very small differences in geometries at the SR and DHF levels, especially in those bonds where Hg is involved, thus the largest enlargement of the Hg--C bond is around 0.04 Å. Since the effect of relativity in the calculated molecular geometries is so small, we argue that differences in binding energies could be attributed to electron correlation. In any case, our calculations show that there is an interplay between electron correlation and relativistic effects so that they cannot be considered as independent. This dependency among both effects has been documented for molecular properties in molecules containing heavy atoms.

This behaviour was also found in calculations on the XeF$_2$ molecule, where the relativistic and electron correlation effects together produce a decrease of ≈ 2 eV in BE and an enlargement of the Xe--F bond distance, which is in conflict with the known general trends for both effects.

On the other hand, in our particular case, both SR-MP2 and Rel-MP2 calculations suggest that relativistic effects at the SR level contribute in an opposite way to the spin--orbit (SO) coupling. Furthermore, SR-MP2 values follow the same trend as non-relativistic values including electron correlation.

Topological analysis of electron densities

As discussed above, thermodynamic stability of $[\text{CH}_3\text{Hg(H}_2\text{O})_{1,2,3}]^+$ clusters is primarily determined by the nature of water \leftrightarrow methylmercury interactions and by hydrogen bonds among water molecules. These types of intermolecular interactions keep the complexes as discrete molecular entities. The interactions considered in this work are not assigned upon visual inspection of the structures in Fig. 1, rather, they correspond to well-defined bonding paths for intermolecular interactions as determined by the quantum theory of atoms in molecules (QTAIM).

All topological properties of the electron densities were calculated using the AIMStudio suite on the MP2/ECP optimized geometries (Fig. 1).

QTAIM provides a universal definition for what constitutes bonding. The QTAIM formalism characterizes interactions as a result of closed-shell (ionic, hydrogen bond, etc.), shared (covalent), and intermediate interactions (with contributions from both closed shell and shared interactions). To describe bonding interactions, information at bond critical points (BCPs) was gathered, this includes electron densities $\rho(r_c)$, their corresponding Laplacians $\nabla^2 \rho(r_c)$, as well as potential $\psi(r_c)$, kinetic $g(r_c)$ and total energy densities $\psi(r_c)$. There are exotic O· · · O interactions in W_1S_2, W_2S_2 and W_3S_3, these interactions are known to occur in other systems, specifically in water clusters, and are known to be comparatively weaker than hydrogen bonds and thus will not be analyzed in this work. Very recently, similar long range S· · · S interactions have been documented for molecular properties in molecules containing heavy atoms.

Quantification of the relative strength of the Hg--C, Hg--O, H--O and H$_2$O -- H--O--H interactions was achieved using the criteria explained next.

The Laplacian of the electron density

$$\nabla^2 \rho(r_c) = 2g(r_c) + \psi'(r_c)$$
Table 4 Topology of the electron densities for the [CH3Hg(H2O)1,2,3]+ complexes. All values are obtained at BCPs for the corresponding interactions

| Structure | Length [Å] | ρ(r_c) [10⁻⁹ au] | ∇²ρ(r_c) [10⁻¹⁷ au] | | r(r_c) | | r(r_c) | | δ(Hg–X) |
|-----------|-----------|-----------------|-----------------|-----------|-----------------|-----------|-----------|
| Hg–C BCPs | | | | | |-----------|-----------|
| W1S1 | 2.06 | 1.29 | 0.35 | −6.42 | 1.88 | 1.05 | |
| W1S2 | 2.06 | 1.32 | 0.42 | −6.66 | 1.87 | 1.05 | |
| W2S1 | 2.12 | 1.14 | 1.00 | −5.37 | 1.95 | 1.02 | |
| W3S1 | 2.05 | 1.34 | 0.50 | −6.78 | 1.85 | 1.05 | |
| W3S2 | 2.05 | 1.33 | 0.47 | −6.73 | 1.86 | 1.05 | |
| W3S3 | 2.06 | 1.32 | 0.57 | −6.55 | 1.83 | 1.04 | |
| W3S4 | 2.07 | 1.29 | 0.64 | −6.29 | 1.80 | 1.05 | |
| W3S5 | 2.11 | 1.12 | 1.05 | −5.58 | 1.95 | 1.02 | |
| W3S6 | 2.14 | 1.11 | 1.18 | −4.93 | 1.86 | 1.01 | |

Hg–O angle ≈ 180°

| Structure | Length [Å] | ρ(r_c) [10⁻⁹ au] | ∇²ρ(r_c) [10⁻¹⁷ au] | | r(r_c) | | r(r_c) | | δ(Hg–X) |
|-----------|-----------|-----------------|-----------------|-----------|-----------------|-----------|-----------|
| C–Hg–O BCPs | | | | | |-----------|-----------|
| W1S1 | 2.23 | 0.62 | 3.48 | −0.23 | 1.03 | 0.37 | |
| W1S2 | 2.17 | 0.73 | 4.07 | −0.55 | 1.05 | 0.44 | |
| W2S1 | 2.27 | 0.60 | 3.40 | −0.44 | 1.06 | 0.34 | |
| W2S2 | 2.14 | 0.81 | 4.47 | −0.85 | 1.07 | 0.49 | |
| W3S1 | 2.15 | 0.78 | 4.28 | −0.71 | 1.06 | 0.47 | |
| W3S2 | 2.18 | 0.73 | 3.99 | −0.25 | 1.02 | 0.43 | |
| W3S3 | 2.23 | 0.64 | 3.53 | −0.28 | 1.03 | 0.37 | |
| W3S4 | 2.21 | 0.71 | 4.02 | −0.75 | 1.09 | 0.40 | |

Table 5 Topology of the electron densities for the [CH3Hg(H2O)1,2,3]⁺ complexes. All values are obtained at BCPs for H₂O···H-CH₃Hg⁺ for the water dimer to be 1.03 and 0.66 respectively

| Structure | Length [Å] | ρ(r_c) [10⁻⁹ au] | ∇²ρ(r_c) [10⁻¹⁷ au] | | r(r_c) | | r(r_c) | | δ(H₂O···H-CH₃Hg⁺) |
|-----------|-----------|-----------------|-----------------|-----------|-----------------|-----------|-----------|
| BCP H₂O···OH | | | | | | | |
| W1S1 | 1.59 | 0.52 | 1.78 | −0.69 | 1.14 | 0.10 | |
| W1S2 | 1.65 | 0.44 | 1.65 | −0.26 | 1.06 | 0.09 | |
| W2S1 | 1.65 | 0.44 | 1.65 | −0.26 | 1.06 | 0.09 | |
| W2S2 | 1.48 | 0.71 | 1.91 | −1.87 | 1.28 | 0.12 | |
| W3S1 | 1.72 | 0.36 | 1.48 | 0.05 | 0.99 | 0.08 | |
| W3S2 | 1.59 | 0.53 | 1.78 | −0.69 | 1.14 | 0.10 | |
| W3S3 | 2.32 | 0.12 | 0.47 | 0.21 | 0.79 | 0.02 | |
| W3S4 | 1.75 | 0.35 | 1.39 | 0.07 | 0.98 | 0.08 | |
| W3S5 | 2.06 | 0.18 | 0.78 | 0.28 | 0.83 | 0.04 | |
| W3S6 | 1.64 | 0.44 | 1.64 | 0.20 | 0.95 | 0.09 | |

known that valence electrons resemble the NR behavior, thus, eqn (7) is still valid within the relativistic regime.

Tables 4 and 5 show the Laplacians computed at all BCPs. For the complexes formed by water ↔ CH₃Hg⁺ interactions, H–O interactions within water molecules are the only ones exhibiting negative Laplacians at the BCPs (not shown in tables), all other interactions (H–C, H₂O···H–O–OH and Hg···O) have positive Laplacians, thus, according to this
criterion, all interactions should be classified as long range or ionic.

Total energy density

The total electronic energy density at a BCP can be used to estimate the strength of the interaction.⁷⁷ | r(r_c) | is negative for all interactions with shared electrons and its magnitude measures the covalent character. On the other hand, | r(r_c) | is positive for the cases in which | r(r_c) |, the kinetic energy density, is larger than | r(r_c) |, the potential energy density, a condition that is characteristic of closed shell interactions (eqn (8)).

| r(r_c) | = | r(r_c) | + | r(r_c) | (8)

The results in Table 4 show the two types of water ↔ methylmercury interactions mentioned above.

Those for which the C–Hg–O angle is close to 180° (common to all clusters) all have negative energy densities at the Hg···O BCPs, suggesting a high degree of electron sharing. Interactions for which the C–Hg–O angle is smaller than 180°, all have positive energy densities at the Hg···O BCPs, indicative of long range interactions with little electron sharing. These results suggest that only one water molecule is needed to stabilize CH₃Hg⁺, in other words, the interaction of CH₃Hg⁺ with just one water molecule produces a bond in an advanced state of formation, further addition of water molecules then solvates the (CH₃Hg⁺·OH₂)⁺ complex via hydrogen bonding between water molecules or weaker Hg···O contacts. This observation nicely helps explaining the preferred coordination number of 2 for Hg in the title clusters; an additional support for this claim will be given next in the discussions of other QTAIM descriptors.

It has been very well documented that it is not uncommon for the signs of | ∇²ρ(r_c) | and | r(r_c) | to give conflicting information, as a result, alternative schemes that combine both criteria have been suggested.⁷⁸ For example, Cremer and Kraka⁷⁷ pointed out that in some cases where the Laplacians of the electron density at BCPs are positive (local depletion of charge), the interaction can still be considered as covalent if the total energy density at the BCP is negative because the absolute value of the potential energy density exceeds the kinetic energy density, resulting in an overall stabilization of the BCP. Rozas and coworkers⁷⁹ suggested a more general set of criteria to determine the nature of interactions for hydrogen bonding cases, which are applicable to this work; they argue that weak to medium strength hydrogen bonds are characterized by | ∇²ρ(r_c) | > 0 and | r(r_c) | > 0, strong HBs exhibit | ∇²ρ(r_c) | > 0 and | r(r_c) | < 0 and the very strong HBs have | ∇²ρ(r_c) | < 0 and | r(r_c) |< 0. All these afford qualitative descriptions of the relative strengths of chemical interactions, in addition, in this work, we use the delocalization index⁸⁰ and the quantitative scale suggested by Espinosa and coworkers,⁸¹ both being discussed next.

Delocalization index

The delocalization index is another property that can be used to characterize bonding interactions.⁸⁰ The delocalization index, δ(A–B), measures the number of shared (delocalized) electrons
between atoms A and B. In this work we use $\delta(\text{Hg}-X)$, where $X = \text{C}, \text{O}$. There is a correlation between $\delta(\text{A}-\text{B})$ and bond order: if $\delta(\text{A}-\text{B}) \approx 1$, a single bond is predicted, for $\delta(\text{A}-\text{B}) \approx 2$, a double bond is expected, and so on. Our calculations (Tables 4 and 5) afford $\delta(\text{Hg}-\text{C}) \approx 1$, suggesting a single bond between carbon and mercury in every complex. In addition, $\delta(\text{Hg} \cdots \text{O})$ is between 0.34 and 0.49 in all cases where the C–Hg \cdots O angle is close to 180°, which is consistent with the picture of partially covalent interactions exposed above. For Hg \cdots O interactions having C–Hg \cdots O angles $< 180°$, $\delta(\text{Hg} \cdots \text{O}) \leq 0.2$, indicating weaker long range interactions.

The $|\Psi|\langle r_c \rangle/|\varphi(\tau_c)|$ ratio

In 2002, Espinosa and coworkers proposed a method to discriminate the nature of interactions by local application of the virial theorem. Their criterion suggests that $|\Psi|\langle r_c \rangle/|\varphi(\tau_c)|$, the ratio of potential to kinetic energy densities evaluated at bond critical points, can be divided into three regions affording information about the nature of bonding: the [0, 1] interval defines closed shell interactions (very little electron sharing), values larger than two correspond to increasingly covalent interactions, and the [1, 2] interval encloses interactions with contributions from both closed shell and shared interactions. It has been pointed out that neither the virial nor the kinetic energy is uniquely defined for arbitrary regions of space, therefore, the information they carry at critical points should not be overstated; nonetheless Espinosa’s criteria have successfully been applied to a variety of bonding situations. In this work, the $|\Psi|\langle r_c \rangle/|\varphi(\tau_c)|$ ratio is an additional piece of evidence to support our view of the nature of intermolecular interactions. As seen in Tables 4 and 5, all Hg \cdots O interactions for which the C–Hg \cdots O angle is close to 180° have ratios that place them in the intermediate character, while those for which the C–Hg \cdots O angle is smaller than 180° fall into the closed shell (long range) nature. Very interesting is the effect of the formal charge in hydrogen bonds of the solvating water molecules; according to this criterion, some of them are unusually strong, being characterized as of intermediate character. The effect of the formal charge on the entire system is discussed next.

The effect of the formal charge

Regardless of the number of water molecules, the most stable motifs in each stoichiometry are those having a single Hg \cdots O interaction, that is, the preferred coordination number of methylmercury is 1. This is very unusual and interesting because the formal positive charge acts as a strong attractor for lone pairs in water molecules, thus, multiple solvent attacks on the same solute molecule should be expected. This is the case, for example, for the microsolvation of metal cations from groups I and II in the periodic table, where up to 6 water molecules are needed to stabilize the formal positive charges. Similar coordination numbers larger than 1 are reported for the microsolvation of anions, even in molecules of considerable size like dimethylphosphate and ibuprofen. For mercury containing molecules, the coordination number is also usually larger than 1, however, the mechanism of microsolvation of these neutral species is very different than for methylmercury because of the presence of the formal charge. In the case of CH$_3$Hg$^+$, the stabilization mechanism is the same as in the microsolvation of other cations, namely, an ion \leftrightarrow dipole interaction is at play, the formal charge (ion) is stabilized via the interaction with the dipole components of the surrounding water molecules, specifically at the lone pair ends.

The seemingly odd and unusual preferred coordination number for methylmercury is rationalized with the help of the data in Table 4 as follows: the calculated delocalization indices for Hg \cdots O interactions are 0.37, 0.44, and 0.49 for W$_4$S$_1$, W$_3$S$_1$, and W$_2$S$_1$, the lowest energy structures for $n = 1, 2$, and 3 respectively. These delocalization indices suggest that the Hg \cdots O interactions in the lowest energy structures are very strong (almost half a bond has been formed), the strength of the interactions is also supported by high values of electron densities, their Laplacians, total energy densities at the BCPs, the $|\Psi|\langle r_c \rangle/|\varphi(\tau_c)|$ ratio, and due to the fact that Hg \cdots O distances are no larger than 8.5% than the formal Hg–C bonds in the same clusters. Thus, we argue that a strong Hg \cdots O bond is highly formed between methylmercury and the first water molecule, and that other water molecules then microsolvate the (CH$_3$Hg$^+$OH$_2$) complex.

The unusually short and long hydrogen bond distances are also a consequence of the formal positive charge in the solute. The very short distances (Fig. 1 and Table 5), all correspond to interactions between a water molecule in a second solvation shell and the water molecule directly in contact with methylmercury: since the Hg \cdots O interaction has already been described as very strong, it weakens the O–H bond making the proton more acidic and more susceptible to attack by a lone pair from a second water molecule, resulting in an unusually strong hydrogen bond (HB). Longer and weaker HBS (for example, structures W$_5$S$_1$ and W$_6$S$_1$ in Fig. 1 and Table 5) are the result of what could be considered a second solvation shell water molecule donating a proton for a HB with a third solvation shell water molecule, whose ability to form HBS has already been diminished by a weaker Hg \cdots O interaction.

NMR spectroscopic parameters

When the molecular systems under study contain atoms belonging to the fifth row of the periodic table or below, it is essential to include relativistic effects to obtain reliable results in the calculations of NMR parameters. We first analyse the non-relativistic limit of the nuclear magnetic shieldings, $\sigma^{(13)}$C, $\sigma^{(17)}$O and $\sigma^{(199)}$Hg, and the behavior of the J-coupling constants $J^{(13}C-17O)$, $J^{(199}Hg-13C)$ and $J^{(199}Hg-17O)$ belonging to W$_4$S$_1$ when the speed of light is scaled by a factor of λ ($\lambda c = 137.0359998$ au), with increased values of λ. In what follows, 17O refers only and exclusively to the oxygen atom forming a C–Hg \cdots O angle close to 180°, unless otherwise specified.

Relativistic effects on the nuclear magnetic shielding σ and J-coupling constants of different atoms involved may be due to two phenomena: the so-called HALA effect (heavy atom effect on light atom), which modifies the light atom environment when there are heavy atoms in its vicinity, and the HAHA effect (heavy atom effects on the heavy atom itself) which...
acts over the heavy atom itself. There is a third effect proposed recently called HAVHA96 (heavy atom effect on a vicinal heavy atom) that appears in molecular systems containing more than one heavy atom, but in this work, mercury is the only heavy atom. We have shown in previous studies69,97 that polarization propagators at the RPA level of approach give reliable results when compared with experiments. This happens to heavy-atom containing molecular systems with Sn and Pb. This approach has proven superior to describe the pattern of chemical shifts when compared to DFT methods.

The results in Fig. 2 and Table 6 show that $\sigma^{(199\text{Hg})}$ rapidly decreases and converges to the non-relativistic limit value as λ increases. In addition, relativistic effects are positive and account for up to 48.6\% of the total shielding (HAHA effect). On the other hand $\sigma^{(13\text{C})}$ and $\sigma^{(17\text{O})}$ exhibit an opposite effect to $\sigma^{(199\text{Hg})}$ dependency on relativistic effects (HALA effect). Those are negative but decrease the nuclear shielding of C and O by 10.7\% and 13.6\% respectively. Usually the HALA effects increase the magnitude of magnetic shielding on the light atom, but in this case the tendency is opposite.

![Image](image-url)

Fig. 2 Relativistic values for nuclear shielding (σ, top left) and J-couplings as a function of speed of light in W\textsubscript{1}S\textsubscript{1}. σ calculations use UKB and cc-pVTZ basis for C, O and dyall.v3z basis for Hg. J-coupling calculations using the optimized aug-cc-pVTZ-J basis for C, O and H and the dyall.v3z basis for Hg.

Table 6 Relativistic (REL) and non-relativistic (NR) values of the nuclear magnetic shielding σ for ^{13}C, ^{17}O, and ^{199}Hg nuclei and the indirect J-coupling $J^{(13\text{C}-17\text{O})}$, $J^{(199\text{Hg}-17\text{O})}$ and $J^{(199\text{Hg}-13\text{C})}$ in W\textsubscript{1}S\textsubscript{1}

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>REL</th>
<th>NR</th>
<th>Nuclei</th>
<th>J (Hz)</th>
<th>REL</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{13}C</td>
<td>197.11</td>
<td>220.74</td>
<td>^{12}C-^{17}O</td>
<td>^{199}Hg-^{13}C</td>
<td>-16.60</td>
<td>-22.08</td>
</tr>
<tr>
<td>^{17}O</td>
<td>295.72</td>
<td>342.31</td>
<td>^{199}Hg-^{17}O</td>
<td>2061.97</td>
<td>-11.11</td>
<td>-11.29</td>
</tr>
<tr>
<td>^{199}Hg</td>
<td>12162.05</td>
<td>8182.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Iso and aniso are short for the isotropic and anisotropic components of J-coupling respectively.
Fig. 2 also shows the variation of $J_{13C-17O}$, $J_{199Hg-17O}$, and $J_{199Hg-13C}$ when the speed of light is scaled up to 7c. As in the case of σ, the values rapidly converge to the NR limit. $J_{13C-17O}$ is negative, as expected, while $J_{199Hg-13C}$ and $J_{199Hg-17O}$ are positive. Table 6 shows that relativistic effects on $J_{iso}(13C-17O)$ amount to $\approx50\%$ and $\approx74\%$ on $J_{iso}(199Hg-13C)$, while for $J_{iso}(199Hg-13C)$ the relativistic values are seven times more than the non-relativistic one. As would be expected, relativistic effects in σ and J-coupling are of fundamental importance for the accurate calculation of NMR parameters for the Hg atom, while for C and O, they are not negligible.

For the nine geometrical motifs shown in Fig. 1, we conclude, from an electronic point of view, that the existence of partially covalent Hg···O interactions and H$_2$O···H–O–H hydrogen bonds provides stability to the clusters and allow the complexes to behave as discrete units. From a structural point of view, we concluded that the interactions between CH$_3$Hg$^+$ and water molecules do not significantly change the geometric parameters (bond lengths and angles) of methylmercury (see Tables 1 and 2). Thus, the spatial arrangement of the H$_2$O molecules and the Hg···O interaction did not end up being crucial to modify the structure of CH$_3$Hg$^+$. However, Fig. 3 shows that the interactions between water molecules and the water ↔ methylmercury interactions, together with the spatial arrangement of water molecules, greatly influence the nuclear shielding on carbon and oxygen. The solvent
introduces additional electronic effects to the effects of heavy atoms due to Hg.

There is a strong correlation between $\sigma(13C)$ and $\sigma(17O)$, hence, solvent effects, spatial arrangements as well as different types of interactions between water molecules influence the $17O$ and $13C$ atoms in a similar way. These atoms are separated by two bonds. Nonetheless, the solvent induces electronic effects along the C–Hg–O interaction, suggesting that the Hg atom serves as an electronic link between the C and O atoms. On the other hand, $\sigma(199Hg)$ decreases as the coordination number in mercury increases. In addition, Fig. 3 also shows a direct correlation between the shielding and the energy of each complex within a particular PES with the possible exception of W_2S_5. There is no direct correlation between $\sigma(199Hg)$ and the number and spatial disposition of hydrogen bonds, but the absence of hydrogen bonds is related to small values of $\sigma(199Hg)$ and vice versa.

Fig. 4 summarizes the calculated J-coupling constants for all clusters in this work. It is seen that the solvent affects $J(13C–17O)$, $J(199Hg–17O)$, and $J(199Hg–13C)$. W_2S_5 and W_3S_6 comprise extreme cases: it is seen that $J(13C–17O)$ and $J(199Hg–13C)$ are maxima (both isotropic and anisotropic) for these two motifs. Fig. 3 shows the lowest $\sigma(199Hg)$ values for these two complexes. Besides, according to QTAIM, both W_2S_5 and W_3S_6, the highest local energy minima, show that water molecules interact via O•••O contacts instead of regular hydrogen bonds.

Even though the spatial configuration and the different interactions among water molecules do not significantly change the structure of CH$_3$Hg$^+$, the J-couplings and the σ nuclear shielding are widely influenced by the solvent. This suggests a new strategy to use J and σ in determining the local geometries in the microsolvation of methylmercury. For example, the combined values of J and σ could indicate the number of solvent molecules in the coordination sphere of CH$_3$Hg$^+$, as well as the type of interactions between solvent molecules.

Concluding remarks

In this work, we report a study of the microsolvation of methylmercury using scalar and full relativistic methods in the calculation of both equilibrium structures and intrinsic and response properties. Inter- and intramolecular interactions have been analyzed using the quantum theory of atoms in molecules (QTAIM). Nuclear magnetic shielding constants and indirect nuclear spin–spin couplings are also discussed.

At the SR level, 1, 2, and 6 structures in the potential energy surface were located for 1, 2, and 3 water molecules interacting with CH$_3$Hg$^+$ respectively. Our results suggest that SR HF geometries are acceptable, with minor to negligible changes when compared to the more expensive SR MP2 and the most expensive DHF calculations. The most stable complexes are energetically favored by a single Hg•••O interaction and to a lesser extent by a large number of hydrogen bonds. We provide evidence suggesting that methylmercury binds very strongly to just one water molecule via Hg•••O interactions, and that additional water molecules solvate the (CH$_3$Hg$^+$$\cdotOH_2^-$) complex. In addition, QTAIM results suggest that when a particular complex presents two Hg•••O interactions, one of them is a highly formed bond with certain degree of covalency while the other is a weaker interaction of closed shell nature.

From a structural point of view, CH$_3$Hg$^+$ is not sensitive to solvent effects because methylmercury ↔ water molecular interactions do not significantly change the geometry of methylmercury; this is clearly seen from the fact that the calculated molecular structures of solvated CH$_3$Hg$^+$ match the geometries of isolated CH$_3$Hg$^+$, in addition, this result is nicely supported by the excellent agreement with gas phase dimethyl-mercury electron diffraction experiments and by NMR studies of CH$_3$HgCl solvated in liquid crystals. Relativistic effects and electron correlation both need to be included for the accurate calculation of interaction energies. The [CH$_3$Hg(H$_2$O)$_{1,2,3}$]$^+$ complexes are thermodynamically stable with respect to dissociation into methylmercury and the corresponding number of isolated water molecules.

Considering the behavior of the two most important magnetic parameters of NMR we have analyzed, we found that they are quite sensitive to the solvation process of methylmercury. Relativistic effects are important or very important depending on the magnetic parameter analyzed. In the case of the Hg•••O interaction in W$_3S_7$, $J(199Hg–17O)$ is highly relativistic. Its relativistic value is seven times larger than its NR counterpart. This means that the Hg•••O coupling is mostly due to the electronic effects. The analysis was carried out keeping the geometry of the structure fixed and scaling the velocity of light in calculations. Relativistic effects increase the value of $\sigma(199Hg)$, while decrease $\sigma(13C)$ and $\sigma(17O)$. Even though such effects are fundamental for mercury (they contribute up to 49% to σ), for carbon and oxygen they are not negligible (11% and 14% contributions to σ respectively). There is a highly correlated behavior among the shieldings of carbon and oxygen in each W_3S_m structure.

A crucial result is that NMR parameters, which are normally used to determine the molecular geometry, are greatly affected by the solvent. However, the structure of methylmercury remains without significant changes due to the presence of water molecules. $\sigma(199Hg)$ decreases as the number of Hg•••O contacts increase. A larger nuclear shielding in $199Hg$ indicates larger energy stabilization. In addition, the number of hydrogen bonds has an inverse relationship with $\sigma(199Hg)$. There is a strong correlation between $\sigma(13C)$ and $\sigma(17O)$. The solvent induces electronic effects along the C–Hg•••O interaction, suggesting that the Hg atom serves as an electronic link between the C and O atoms. $J(13C–17O)$ and $J(199Hg–13C)$ couplings are affected by hydrogen bonds.

From our results we can state that NMR spectroscopic parameters can be used as important experimental and theoretical tools to learn how many water molecules take part in the microsolvation process of methylmercury.
Acknowledgements

Funding for this work was partially provided by Universidad de Antioquia via “Estrategia para la sostenibilidad” and CODI internal project no. 10170. The authors thank APOLLO, the Center for Scientific Computing at Universidad EAFIT and Juan David Pineda, the system administrator. The work in Argentina was supported by the Argentinian Agency for promotion of Science and Technology (FONCYT PICT2012-1214).

References

36. J. Pérez y A. Restrepo, ASCEC V-02: Annealing Simulado con Energia Cuánctica, Property, Development and Implementation, Grupo de Química-Física Teórica, Instituto de Química, Universidad de Antioquia, Medellin, Colombia, 2008.

